Preinstallation Manual
Diamond Series OEM/Industrial
Diamond C-70™ Air-Cooled Laser
This document is copyrighted with all rights reserved. Under copyright laws, this document may not be copied in whole or in part, or reproduced in any other media, without the express written permission of Coherent, Inc. (Coherent). Permitted copies must carry the same proprietary and copyright notices as were affixed to the original. This exception does not allow copies—whether or not sold—to be made for others; however, all the material purchased may be sold, given, or loaned to another person. Under the law, “copying” includes translation into another language.

Coherent, the Coherent Logo, and Diamond are registered trademarks of Coherent, Inc.

Every effort has been made to ensure that the data given in this document is accurate. The information, figures, tables, specifications, part numbers, and schematics contained herein are subject to change without notice. Coherent makes no warranty or representation, either expressed or implied, with respect to this document. In no event will Coherent be liable for any direct, indirect, special, incidental, or consequential damages resulting from any defects in its documentation.

Technical Support

In the US:

Should you experience any difficulties with your laser or need any technical information, please visit our Web site www.Coherent.com. Should you need further assistance, please contact Coherent Technical Support via e-mail Product.Support@Coherent.com or telephone, 1-800-367-7890 (1-408-764-4557 outside the U.S.). Please be ready to provide model and laser head serial number of your laser system as well as the description of the problem and any corrective steps attempted to the support engineer responding to your request.

Telephone coverage is available Monday through Friday (except U.S. holidays and company shutdowns). Inquiries received outside normal office hours will be documented by our automatic answering system and will be promptly returned the next business day.

Outside the U.S.:

If you are located outside the U.S., please visit www.Coherent.com for technical assistance, or phone our local Service Representative. Service Representative phone numbers and addresses can be found on the Coherent web site.

Coherent provides telephone and web-based technical assistance as a service to its customers and assumes no liability thereby for any injury or damage that may occur contemporaneous with such services. Under no circumstances do these support services affect the terms of any warranty agreement between Coherent and the buyer. Operation of any Coherent laser with any of its interlocks defeated is always at the operator's own risk.
TABLE OF CONTENTS

Preface ... v
U.S. Export Control Laws Compliance ... v
Notice Concerning Regulatory Status of Diamond Series Lasers v
Notice Concerning Warranty .. v
Symbols Used in This Manual .. vi

Section One: Description and Specifications ... 1-1
 Introduction .. 1-1
 Purpose of This Manual .. 1-1
 Specifications and Input Requirements ... 1-2
 Hardware Overview .. 1-2
 DC Input Power .. 1-2
 Cooling Requirements .. 1-2
 Comparison of Air-Cooling and Liquid-Cooling (Reference) 1-3
 Laser Head .. 1-3
 RF Power Supply ... 1-4
 Specifications ... 1-4

Section Two: Laser Safety .. 2-1
 Optical Safety ... 2-1
 Electrical Safety ... 2-3
 Laser Head ... 2-3
 Laser Safety Requirements ... 2-4
 Safety Interlocks .. 2-4
 Compliance to Standards .. 2-5
 Location of Safety Labels .. 2-5

Waste Electrical and Electronic Equipment (WEEE, 2002) 2-5

Section Three: Utility Requirements and System Installation 3-1
 Introduction ... 3-1
 Unpacking and Inspection ... 3-1
 Verifying Delivery .. 3-1
 Checking Delivered Items .. 3-1
 Safety Issues in Laser Installation .. 3-2
 Mechanical Mounting ... 3-2
 Mounting Considerations for Diamond C-70 .. 3-4
 Ambient Air Cleanliness .. 3-4
 Air Cooling ... 3-5
 Air Flow .. 3-5
 Signal Interface 3-5
 Electrical Power Connection .. 3-6
 DC Power Supply Requirements .. 3-7
 DC Power Supply Cabling Requirements .. 3-7
DC Power Supply Over-Voltage Tripping ... 3-8
Control Signal Connection... 3-8
Beam Propagation... 3-9

LIST OF ILLUSTRATIONS

1-1 Diamond C-70 Air-Cooled Laser ... 1-1
2-1 Waste Electrical and Electronic Equipment Label 2-5
2-2 Location of Safety Labels .. 2-6
3-1 Diamond C-70 Air-Cooled Laser Head Dimensions 3-3
3-2 Electrical Connections to Diamond C-70.. 3-6
3-3 Beam Diameter vs. Distance From Laser Head... 3-9

LIST OF TABLES

1-1 Comparison: The Benefits of Air-Cooling vs. Liquid-Cooling Methods 1-3
1-2 Specifications and Input Requirements for Diamond C-70 Lasers 1-4
Preface

This is the Preinstallation Manual for the Diamond C-70™ Air-Cooled OEM/Industrial carbon dioxide (CO₂) lasers manufactured by Coherent. These lasers are OEM systems; they are designed as components which are to be inserted by the original equipment manufacturer (OEM) prior to delivery to the end user. It is strongly recommended that the user read Section Two: Laser Safety, before operating the laser.

Use of controls or adjustments or performance of procedures other than those specified in this manual may result in hazardous radiation exposure.

U.S. Export Control Laws Compliance

It is the policy of Coherent to comply strictly with the U.S. export control laws.

Export and re-export of lasers manufactured by Coherent are subject to the U.S. Export Administration Regulations, which are administered by the Commerce Department. In addition, shipments of certain components are regulated by the State Department under the International Traffic in Arms Regulations.

The applicable restrictions vary depending on the specific product involved, intended application and the product destination. In some cases, U.S. law requires that U.S. Government approval be obtained prior to resale, export or re-export of certain articles. When there is uncertainty about the obligations imposed by U.S. law, clarification should be obtained from Coherent or an appropriate U.S. Government agency.

Notice Concerning Regulatory Status of Diamond Series Lasers

This laser component does not include all safety features that are required by the United States Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH) in laser systems sold to end users. It is sold solely to qualified manufacturers who in their end product, supply interlocks, indicators, and other required safety features, in full compliance with 21 CFR 1040, Subchapter J and/or other applicable national and local regulations.

Notice Concerning Warranty

Operation or handling of this laser component, inconsistent with this manual, may void the warranty.
Symbols Used in This Manual

This symbol is intended to alert the operator to the presence of dangerous voltages associated with the laser that may be of sufficient magnitude to constitute a risk of electric shock.

This symbol is intended to alert the operator to the presence of important operating and maintenance instructions.

This symbol is intended to alert the operator to the danger of exposure to hazardous visible and invisible laser radiation.
SECTION ONE: DESCRIPTION AND SPECIFICATIONS

Introduction

This section details specifications and characteristics (including mechanical, thermal, electrical, and optical interfaces; environmental requirements, and limitations) of the Diamond C-70 laser.

The Diamond C-70 laser is a sealed-off, RF-excited CO₂ laser, capable of continuous wave (CW) or modulated operation. From the laser safety point of view, this laser is considered to be a component and must be integrated into a system by a qualified original equipment manufacturer (OEM) prior to delivery to the end user. See the section titled “Laser Safety Requirements” on page 2-4 for a complete discussion of laser safety issues.

Purpose of This Manual

This manual is designed to assist the original equipment manufacturer (OEM) during the integration of the Diamond C-70 OEM laser. It contains information about the performance and operation of the laser as well as installation and control methods.
Specifications and Input Requirements

Table 1-2 provides specifications and requirements for power inputs for the Diamond C-70 laser.

Figure 1-1 illustrates the baseline configurations (i.e., without any optional hardware additions or deletions) of the Diamond C-70 laser. Each laser system consists of a laser head assembly and an integrated radio frequency (RF) power supply. The RF power supply converts 48 VDC, ≤ 25 A (35 A peak for 1 ms) power to radio frequency power.

Connection of the customer-supplied DC power supply to the Diamond C-70 is via a barrier strip with screw terminals on the RF power supply. These terminals should also be used for the connection of wires for remote voltage sensing. Such sensing is recommended to control the voltage at the input to the RF power supply more precisely.

Hardware Overview

The Diamond C-70 laser is a waveguide, carbon dioxide (CO$_2$) laser. RF electric fields provided by the RF power supply excite the CO$_2$ gas mixture. The standard configuration of this laser operates at a wavelength near 10.6 μm in the infrared region of the electromagnetic spectrum.

DC Input Power

DC input power is provided by the user through customer-supplied bus wiring, which goes to the RF power supply. The RF power supply converts this DC electrical power into RF power, which is used to excite the gas in the laser head. The DC power supply requirements are discussed in detail in the subsection entitled “DC Power Supply Requirements” on page 3-7.

Cooling Requirements

Total heat dissipation for the laser is specified in Table 1-2. The laser head typically dissipates 700 W from its base surface while the RF power supply typically dissipates 300 W, for a total typical heat dissipation of 1000 W (maximum total heat dissipation is 1200 W). The Diamond C-70 must be provided adequate cooling to keep the laser operating temperature within acceptable limits. The cooling method that is used must not induce stresses that will result in misalignment of the laser resonator. The Diamond C-70 heat sinks are designed so the assembled structure remains free of excessive stress. Installation requirements related to cooling the air-cooling version of the Diamond C-70 laser are discussed in detail in the subsection titled “Air Cooling” on page 3-5.
Air-cooling and liquid-cooling each have distinct advantages. Table 1-1 describes the factors that should be taken into consideration when choosing a cooling system for a laser module.

One should also consider if condensable vapors are present and take suitable measures to purge sensitive areas, such as optical surfaces, with a suitable gas.

<table>
<thead>
<tr>
<th>Comparison of Air-Cooling and Liquid-Cooling (Reference)</th>
</tr>
</thead>
</table>

Air-cooling and liquid-cooling each have distinct advantages. Table 1-1 describes the factors that should be taken into consideration when choosing a cooling system for a laser module.

Table 1-1. Comparison: The Benefits of Air-Cooling vs. Liquid-Cooling Methods

<table>
<thead>
<tr>
<th>AIR COOLING</th>
<th>LIQUID COOLING</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Low in cost</td>
<td>• Offers the highest process stability</td>
</tr>
<tr>
<td>• Low in complexity</td>
<td>• Can yield the most compact arrangement</td>
</tr>
<tr>
<td>• Low service requirements</td>
<td>• Suitable for applications in which the ambient air</td>
</tr>
<tr>
<td>• Easier to install</td>
<td>temperature exceeds 40ºC</td>
</tr>
<tr>
<td></td>
<td>• Better for applications in which the ambient air</td>
</tr>
<tr>
<td></td>
<td>is laden with particulates; it will result in a</td>
</tr>
<tr>
<td></td>
<td>maintenance requirement of cleaning of air-cooling</td>
</tr>
<tr>
<td></td>
<td>system and in general lower heat transfer, more</td>
</tr>
<tr>
<td></td>
<td>performance instability and shorter product life</td>
</tr>
<tr>
<td></td>
<td>time if air-cooled laser is used</td>
</tr>
<tr>
<td></td>
<td>• Easier to make a hermetically sealed system</td>
</tr>
</tbody>
</table>

To avoid damage to the laser, never operate the laser without adequate air cooling.

Laser Head

The laser head takes RF input power and converts some of it to laser radiation. The rest of the RF input power is exhausted as waste heat. For the Diamond C-70 air-cooled laser, the waste heat is exhausted into the ambient air. The laser head consists of the folded optical waveguide resonator, the all-metal gas envelope structure, and RF power supply. Infrared laser radiation is emitted from the optical aperture. Pictures and dimensions drawings for the Diamond C-70 air-cooled laser are shown in Figure 1-1 and Figure 3-1.
RF Power Supply

The Diamond C-70 RF power supply converts DC input power to RF energy which is sent to the laser head. Heat from the RF power supply flows into the integrated laser assembly and is exhausted into the surrounding air. An RJ-45-type connector is used to control the laser system. All of the user interfaces (DC power and signal interface) are on one panel of the RF power supply.

Specifications

Table 1-2 describes the specifications and input requirements for Diamond C-70 lasers.

Table 1-2. Specifications and Input Requirements for Diamond C-70 Lasers

<table>
<thead>
<tr>
<th>SYSTEM PERFORMANCE SPECIFICATIONS</th>
<th>Wavelength</th>
<th>10.55 µm to 10.65 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Output Power¹</td>
<td>70 W</td>
<td></td>
</tr>
<tr>
<td>Power Stability²</td>
<td>± 5%</td>
<td></td>
</tr>
<tr>
<td>Mode Quality</td>
<td>$M^2 = 1.2 \pm 0.1$</td>
<td></td>
</tr>
<tr>
<td>Beam Size</td>
<td>3.6 ± 0.5 mm @ output aperture</td>
<td></td>
</tr>
<tr>
<td>Beam Divergence</td>
<td>< 5 mRad, full angle</td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>> 100 to 1 (Fixed linear, parallel to width dimension)</td>
<td></td>
</tr>
<tr>
<td>Operating Frequency & Duty Cycle</td>
<td>0 to 25 kHz, 0 to 100% DC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONFIGURATION & FACILITY REQUIREMENTS</th>
<th>Weight</th>
<th>10.2 kg (22.5 lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions L x W x H</td>
<td>604.9 x 92.5 x 154.5 mm (23.8 x 3.64 x 6.08 in.)</td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>48 VDC < ± 2% regulation, < ± 1% P-P Noise/Ripple 25 A Max avg, with 35 A peak for 1 msec minimum, measured at input terminals</td>
<td></td>
</tr>
<tr>
<td>Heat Dissipation</td>
<td>< 1200 W</td>
<td></td>
</tr>
<tr>
<td>Maximum Case Temperature</td>
<td>< 60°C (140°F)</td>
<td></td>
</tr>
<tr>
<td>Operating Environment - Temperature</td>
<td>5°C to 40°C (41°F to 104°F)</td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>< 2,000 m (6,500 ft.)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>Non-condensing</td>
<td></td>
</tr>
<tr>
<td>Shipping/Storage Environment</td>
<td>- 10°C to 60°C (14°F to 140°F), Non-condensing</td>
<td></td>
</tr>
</tbody>
</table>

¹ Power measured @ 25°C & derated by 1%/°C for higher laser head temperatures
² Power Stability based on $\pm (P_{max}-P_{min})/(2*P_{max})$ average power measurement @ constant duty cycle after 10-minute warm-up @ operating condition
SECTION TWO: LASER SAFETY

Optical Safety

The Diamond C-70 laser has undergone extensive testing to ensure that, with proper usage, it is a safe and reliable device.

Because of its special properties, laser light poses safety hazards not associated with light from other sources. The safe use of lasers requires that all laser users and everyone near the laser be aware of the dangers involved in laser operation.

Direct eye contact with the output beam from the laser will cause serious damage and may cause blindness.

All personnel in the same room as the laser or anyone who may be exposed to the laser beam should be informed that a laser is in operation. All personnel must wear laser safety glasses which protect against the wavelengths in use.

There is no visible indication at the Diamond C-70 laser head that it is operating.

Exercise caution to protect against specular reflections, because reflections at the Diamond C-70 laser wavelength are invisible.

Eye safety is a great concern when using a high-power laser such as the Diamond C-70 laser. There are often many secondary beams present at various angles near the laser. These beams are specular reflections of the main beam from polished surfaces. While weaker than the main beam, such beams may still be sufficiently intense to cause eye damage.

Laser beams are also powerful enough to burn skin, clothing or paint. They can ignite volatile substances such as alcohol, gasoline, ether, and other solvents and can damage the light-sensitive elements in video cameras, photomultipliers, and photodiodes.
Coherent provides the following recommendations to promote the safe use of the Diamond C-70 laser. Operators are advised to adhere to these recommendations and employ sound laser safety practices at all times.

- Use protective eyewear when operating the laser and guard against inadvertent exposure to skin or clothing. Select eyewear which is suitable for use with the wavelengths and radiation intensity that the laser emits. Refer to the *Guide for Selection of Laser Eye Protection*, Laser Institute of America (6th Edition), 2007.

- The beam path should be enclosed with a protective cover (ideally with an interlock scheme) and these covers should not be removed during normal use.

- Never look directly into the laser output port when the power is on.

- Set up the laser and all optical components used with the laser away from eye level. Provide enclosures for the laser beam.

- Use the laser in a room with access controlled by door interlocks. Post warning signs. When operating the laser, limit access to the area to individuals who are trained in laser safety.

- Avoid operating the laser in a darkened environment.

- Do not use the laser in the presence of flammables, explosives, or volatile solvents such as alcohol, gasoline, or ether.

For additional information on laser safety, refer to the following publications:

Many of these documents on Laser Safety are available through Laser Institute of America, 13501 Ingenuity Drive, Suite 128, Orlando, CA 32826. Phone 800-345-2737 and on their website www.laserinstitute.org. Regulatory information is available at their CDRH website www.fda.gov/cdrh.
Electrical Safety

The Diamond C-70 RF power supply requires only 48 VDC input voltage. This voltage and other voltages derived within this laser can be lethal. Every portion of the electrical system should be treated as if it were at a dangerous voltage level.

Laser Head

High voltages are present in the laser head when the power is on. There are no serviceable parts or optics within the laser head. Do not remove any covers or make any adjustments to any screw.

To avoid potentially fatal electrical shock hazards from electrical equipment, follow all applicable electrical codes such as (in the U.S.) the National Electrical Code.
Laser Safety Requirements

This laser does not conform to the United States or Foreign Government requirements for laser safety. In the United States, it is the responsibility of the buyer to ensure that the product sold to the end user complies with all laser safety requirements prior to resell. These laser safety requirements are contained in 21 CFR, Sub Chapter J and are administered by the Center for Devices and Radiological Health (CDRH).

The text of this federal law is available from the U.S. Government Printing Office Bookstore located in most major cities in the U.S. as well as Washington, D.C. A report detailing how the laser product complies with the Federal law is required before the product is shipped. The form of this report is covered in a pamphlet entitled: Guide for Preparing Product Reports for Lasers and Products Containing Lasers, Sept. 1995:

U.S. Department of Health and Human Services
Public Health Service
Food and Drug Administration
Center for Devices and Radiological Health
Division of Small Manufactures Assistance
Rockville, Md 20857
Voice phone: 1-800-638-2041
website: http://www.fda.gov/cdrh

For jurisdictions outside of the United States, it is the responsibility of the buyer of this laser device to ensure that it meets the local laser safety requirements.

Safety Interlocks

The RF power supply and laser head covers are not interlocked. These covers should never be removed. There are no user-serviceable components inside.

Use of controls or adjustments, or performance of procedures other than those specified herein, may result in hazardous radiation exposure.

To avoid potentially fatal electrical shock hazards from electrical equipment, follow all applicable electrical codes such as (in the U.S.) the National Electrical Code.
Compliance to Standards

The Diamond C-70 units are components and thus the system integrator is responsible for meeting the applicable standards for the CE mark. As part of the testing program, the Diamond C-70 has been shown to be compliant with the following standards: radiated emissions (EN 55011 Group 1 Class A) and radiated immunity (IEC 61000-4-2 (1995) Level 3; IEC 61000-4-3 (1995) Level 3; IEC 61000-4-6 (1996) Level 3).

Compliance to the applicable standards for a particular laser system incorporating the Diamond C-70 unit must be demonstrated by the manufacturer of the laser tool. By testing the Diamond C-70 OEM system, it is shown that this step is possible. The primary issue for the system integrator is to show compliance with specific covers, routing or electrical cables to laser safety standards as well as other applicable standards.

Location of Safety Labels

Refer to Figure 2-2 for a description and location of all required safety labels. These include warning labels indicating removable or displaceable protective housings, apertures through which laser radiation is emitted and labels of certification and identification [CFR 1040.10(g), CFR 1040.2, and CFR 1010.3/EN60825-1, Clause 5].

Waste Electrical and Electronic Equipment (WEEE, 2002)

The European Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC) is represented by a crossed-out garbage container label (Figure 2-1). The purpose of this directive is to minimize the disposal of WEEE as unsorted municipal waste and to facilitate its separate collection.

Figure 2-1. Waste Electrical and Electronic Equipment Label
Figure 2-2. Location of Safety Labels (Sheet 1 of 3)
1. IDENTIFICATION LABEL

2. DANGER OF LASER RADIATION LABEL

Figure 2-2. Location of Safety Labels (Sheet 2 of 3)
3. TAMPER PROOF LABEL

4. QC APPROVAL LABEL

5. MANUFACTURE DATE LABEL

6. ROHS “20” LABEL

7. VOLTAGE WARNING LABEL

8. WARNING APERTURE LABEL

Figure 2-2. Location of Safety Labels (Sheet 3 of 3)
SECTION THREE: UTILITY REQUIREMENTS AND SYSTEM INSTALLATION

Introduction
This section covers unpacking and installation of the Diamond C-70 laser. Operating instructions are detailed in Section Four: Laser Operation in the operator’s manual.

Unpacking and Inspection
Before unpacking the laser components, inspect the shipping carton for evidence of rough handling, and note any damage. If damage to the shipping carton is evident, request that the carrier’s agent be present when the unit is unpacked. Inform the shipping carrier and Coherent of any evidence of damage in shipment. The Buyer and shipping carrier is responsible for any damage which might occur during shipment.

Verifying Delivery
The shipping container contains the following:

- Laser head and integral RF power supply
- Final test sheet
- This Operating Manual

If any items are missing, report this to Coherent immediately.

Checking Delivered Items
Verify that the delivered laser head model received is the same as the one ordered. If there is any discrepancy found, contact Coherent immediately.

Coherent recommends that the shipping box and packing materials be saved; as these will be required should the laser need to be shipped back to the factory.
Safety Issues in Laser Installation

Installation of the Diamond C-70 laser must comply with all applicable electrical safety and laser safety laws and regulations. Review Section Two: Laser Safety for important information relating to safety.

The negative (return) side of the DC input connection to the Diamond C-70 RF power supply is connected internally to the chassis. The user must ensure that the system into which the Diamond C-70 is built protects against the possibility that the Diamond C-70 laser head or RF power supply chassis could be at a hazardous voltage and that personnel could be exposed to these voltages.

To avoid potentially fatal electrical shock hazards from electrical equipment, be sure to follow all applicable electrical codes such as (in the U.S.) the National Electrical Code.

The laser must be secured properly to avoid the possibility of the laser shifting unexpectedly during operation, creating a hazardous condition. The location of the output beam of the Diamond C-70 laser head is shown in Figure 3-1. The laser output is emitted from the aperture shown in the referenced figures and propagates within a full cone angle up to 5°. The acceptance angle of the system aperture must intercept all of the output of the laser.

It is also extremely important to understand the direction, divergence, and magnitude of all reflections that will occur from optical surfaces. Infrared (IR) beams, such as those from Diamond C-70 lasers, can also be located with commercially available IR screens, such as those produced by Macken Instruments, Inc. [tel. (707) 566-2110]. Coherent recommends that all beam propagation paths be enclosed and that personnel operating the laser be qualified optical technicians who are familiar with this type of hardware.

Mechanical Mounting

The dimensions for the Diamond C-70 laser head is shown in Figure 3-1. Mechanical mounting of the Diamond C-70 laser head must result in no distortion or stress the laser head is in any way. Otherwise, optical alignment and power stability could be adversely affected.
Figure 3-1. Diamond C-70 Air-Cooled Laser Head Dimensions

Notes: Dimensions may vary for different heat sink heights.
Mounting Considerations for Diamond C-70

Certain aspects of specific customer applications may preclude absolute interchangeability of laser heads. For example, for certain applications, the sensitivity of the application to optical beam pointing errors may require external optical realignment after the laser head is replaced in the customer’s integrated system. Depending on the method of mounting and the sensitivity of the integrated customer system to beam pointing errors, even removing a laser head from the customer’s system, then replacing the same laser head back into the customer’s system may require external optical realignment. This external alignment would be a repositioning of the head itself or adjustment of beam delivery mirrors (positions and angle). Consult Coherent if there is any question about such interchangeability issues. Consult Coherent if there is any question about such interchangeability issues.

Coherent recommends using optional brackets (part number 1101-12-0016 for a set of 4) that are designed for mounting the laser safely without inducing any stress onto the laser. Care must be taken not to induce stress onto the laser head, as optical mis-alignment of the laser resonator can occur, which would require the laser to be returned to Coherent for service. A mechanical drawing for this bracket is provided in Appendix A: Parts List in the operator’s manual. Coherent strongly encourages use of this bracket or one of similar design in order to accommodate the temperature changes in operation while providing secure mounting.

Ambient Air Cleanliness

Diamond C-70 laser heads are designed for use in a dust-free or nearly dust-free environment. They should be installed in a protective housing that prevents dust or debris from contaminating the optical output window. Do not turn the laser on if there is water, dust, or dirt on the output element; otherwise, damage to the coating on this optical element may occur. To prevent such optical damage, never allow the output window to become contaminated.

Do not allow the fins on the heat sinking elements to become clogged with dirt, dust, or debris. They must be cleaned periodically, as indicated in Section Five: Maintenance and Troubleshooting of the operator’s manual.

In the case of the Diamond C-70 air-cooled laser, a dust- and particle-free environment must be maintained around the heat sinks. Dust or particles can clog the fans and heat sinks, and degrade their performance significantly. Coherent recommends that the OEM set up a regular preventive maintenance schedule to clean these cooling fins every 6 months or as needed in the OEM’s operating environment.
The Coherent warranty covers defects in material and workmanship relating to the output optical element, but this warranty does not cover damage to the external output optical surface that is the result of contamination to the surface, or abrasion of the surface.

Air Cooling

The Diamond C-70 air-cooled laser incorporates heat sinks cooled by forced air (blown by fans). The six fans draw 1.6 A of current when supplied with the required 48 VDC electrical power. Running the fans at higher voltages will reduce the operating life and is strongly discouraged. The user must provide the correct voltage polarity to the fans in order for the airflow direction and resulting volume to be sufficient to cool the laser adequately.

Air Flow

Open-air flow for the laser system is critical. Therefore, Coherent requires clear access to free air within 60 mm of the cooling fans and fins for the laser system. The air used to cool the Diamond C-70 must be clean and free of contaminants. This requirement can be fulfilled by filtering the air at the input to the laser cavity or system equipment.

Signal Interface

Coherent uses a temperature interlock to ensure that the fans are operating and supplying sufficient air cooling. It is recommended that both RF Enable and Control Enable be commanded to the OFF state when the airflow interlock system detects an over-temperature fault. The system also provides a temperature warning that should be used to alert the user to a need for maintenance of the cooling system to return the performance to the normal full cooling capacity. Failure to take action regarding the temperature warning will result in poorer product performance (outside specifications) and lesser product life time. These signals are listed in Table 4-1 on page 4-1 and further discussed in subsections of Section Four: Laser Operation in the operator’s manual.
Electrical Power Connection

The Diamond C-70 laser requires 48 VDC input DC power. This power is carried from the power source to the system through the terminal block on the Diamond C-70. The maximum current required is 25 A.

Note: Pin #1 of RJ45 control interface is on the left as viewed.

Connect leads to the user-supplied power source last after other connections are made.

Figure 3-2. Electrical Connections to Diamond C-70

The negative (return) side of the DC input connection to the Diamond C-70 RF power supply is connected internally to the chassis. The user must assure that the system into which the Diamond C-70 is built protects against the possibility that the Diamond C-70 chassis could be at a hazardous voltage and that personnel could be exposed to these voltages.
To avoid potentially fatal electrical shock hazards from electrical equipment, be sure to follow all applicable electrical codes, such as (in the U.S.) the National Electrical Code.

Coherent strongly recommends that the user review the precautions described in Section Two: Laser Safety regarding electrical safety before using the Diamond C-70 laser. It is the user’s responsibility to provide circuit breakers and/or fusing of the AC power source, in accordance with all applicable laws and regulations.

DC Power Supply Requirements

Requirements for the customer-supplied DC power supplies include standards regarding DC power supply cabling and over-voltage tripping.

- **DC Voltage**: 48 VDC measured at the terminals.
- **Peak Current**: <35 A for a minimum of 1 msec with a maximum voltage drop of 1.5 V
- **Regulation**: < ± 2%
- **Regulation Sensing**: Remote at load
- **Ripple and Noise**: < 1% p-p (20 MHz BW limit)
- **Overload Protect**: Automatic Recovery
- **Short-circuit Protect**: Automatic Recovery

DC Power Supply Cabling Requirements

Coherent strongly recommends the use of remote voltage sense/regulation at the Diamond C-70. This requires a 4-wire cable (two supply currents and two voltage senses).

The following requirement minimizes the voltage loss from the supply to the Diamond C-70:

<table>
<thead>
<tr>
<th>WIRE LENGTH (IN METERS)</th>
<th>AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2</td>
<td>2 x 17 or 14</td>
</tr>
<tr>
<td>2 to 3</td>
<td>2 x 15 or 12</td>
</tr>
<tr>
<td>3 to 5</td>
<td>2 x 13 or 10</td>
</tr>
</tbody>
</table>

Note: Typically, doubling the wire at a given length will reduce the AWG by 3.
In the event that the DC power supply trips because of the current, there are two countermeasures that can be applied:

- Remote sensing, in which four wires are used to sense the regulation of the DC power supply
- Increased capacitance at the laser connection; to do this, add a capacitor at the DC power supply connection of the laser, using a capacitor of 470 μF or greater, rated at > 60 VDC

Electrical control of the Diamond C-70 laser is achieved via a RJ-45 connector built into the system. The signals carried on each of the pins are indicated in Table 4-1 in the operator’s manual. Details about controlling the laser through the signal interface are discussed in the paragraph titled Section Four: Laser Operation in the operator’s manual.

Coherent highly recommends use of shielded interface cables. The interface cable shield must connect to the chassis ground of the controller. In addition to proper shielding, this shield provides a secondary connection for the signal ground (Pin 8).

A floating ground connection (use of un-shielded interface cable or no return path between the host control electronics and the laser) can present an unsafe condition and result in unstable or unexpected operation of the laser. This condition can arise when the control signal ground connection (Pin 8) is lost and the Control Enable (Pin 7) and RF Enable (Pin 1) remain high. Therefore, Coherent strongly recommends that a second safety ground be provided either via a shielded control cable or common potential chassis mounting between the laser head and the control electronics.
The Diamond C-70 delivers a 3.6 ± 0.5 mm diameter beam with a < 5 mRad divergence. The typical beam diameter as a function of distance from the laser is shown in Figure 3-5.

Figure 3-3. Beam Diameter vs. Distance From Laser Head