Recent Progress in Active Fiber Designs and Monolithic High Power Fiber Laser Devices

Kanishka Tankala, Adrian Carter and Bryce Samson

Advantages of Fiber Lasers

Features	Benefits		
Highly efficient diode pumped operation (20-30 % wall plug efficiency)	Lower cost of ownership (service requirements)		
Easy thermal management	Lower cooling requirements (air-cooled operation)		
Robust, reliable all-fiber monolithic design	Low mantainance No cavity optics to adjust or align		
Excellent beam quality M ² ~1, TEM ₀₀	Small focal spot size Long depth of focus		
High power 1 micron output	Fiber deliverable output direct to workpiece		
Compact and lightweight	Uses less floor space and is mountable/flyable		

Fiber Laser Advantage - Efficiency

Laser	Optical-optical efficiency	Wall plug efficiency	
Lamp-pumped YAG	4%	1%	
Diode-pumped YAG 40-50 %		6%	
Yb:YAG Disk	40-50 %	20%	
CO2	N/A	10%	
Yb:Glass fiber	>75%	20-30 %	

The inherent efficiency of the fiber laser is unrivalled when compared to existing conventional laser technologies.

Advantages of Fiber Lasers - Beam Quality (Beam Parameter Product and Depth of Focus)

	CO2 Lasers	Lamp-pumped Nd:YAG	Diode-pumped Nd:YAG	Yb:YAG Disk	Yb:Glass Fiber		
BPP	6 mm.mrad	25 mm.mrad	12 mm.mrad	6 mm.mrad	0.34 mm.mrad		
DOF (mm) at given focused spot size							
400 microns	13.3 mm	3.2 mm	6.6 mm	13.3 mm	235 mm		
200 microns	3.3 mm	0.8 mm	1.6 mm	3.3 mm	58.8 mm		

- Fiber lasers have 10-30X greater depth of focus (DOF) than CO2 lasers
 - intense focal region is maintained over an extended distance
- Process Advantages
 - thicker materials with smaller kerf
 - larger distance from work piece
 - Smaller, focused beams: high resolution at higher speeds
- Design and Maintenance Costs
 - Smaller spot size can be obtained with less beam expansion
 - smaller, less expensive lenses
 - faster, smaller and less expensive galvo-mirrors
 - Lower maintenance to protect optics from heat, reflections, debris, etc

K. Tankala et al. SPRC 2005 Experience Determination

Fiber Laser Advantage – Robust and Reliable

- Fiber lasers architecture is monolithic (entire laser is in the fiber)
 - Doped fiber core is the gain media
 - Fiber cladding is the "pump chamber"
 - The output coupler and high reflector are Bragg Gratings written into the fiber core.
 - The pump diodes may be spliced directly to the active fiber (cavity)

- Monolithic all-fiber architecture is inherently more reliable than free space (exposed) optics with adjustable mechanics (alignment sensitive) of conventional laser
- The beam quality will NOT change over the lifetime of the laser

Double Clad (Cladding Pumped) Fibers

- First cladding pump design (Snitzer, 1988)
 - Removed requirement for core pumping
- Brightness converter:
 - Input: low-cost, large-area, high-power semi-conductor source
 - Output: high brightness output
- High power output (SM core) limited by SRS (~125 W, IPG)

Power Scaling in Single Mode Fibers

Fiber Design:

- If V-value is < 2.405 fiber is SM</p>

Limitations:

- Optical nonlinearities (NL) such as SRS, SBS, SPM, FWM limit power scaling in small core, high NA fibers
- Small cores limit energy storage capacity for pulsed applications

3 -10micron (0.2-0.1NA) 10 -15micron (0.1-0.06NA)

Figure 2: Output optical power versus pump power

K. Tankala *et al.* SPRC 2005 Experience **Determination**

Large Mode Area Fibers

- LMA fibers use low NA, MM cores to limit nonlinearities
- Techniques such as coiling are used to achieve a diffraction limited beam

Courtesy D. Kliner, Sandia National Labs

Power Scaling with LMA Fibers

Broadband diffraction limited output from single strand of fiber

Fiber lasers are a viable alternative to more conventional solid state lasers

www.nufern.com

Yb-doped LMA "Standard" fibers

20µm core, 0.06NA

K. Tankala et al. SPRC 2005 Experience Determination www.nufern.com

High Power Operation of LMA 20/400 Fiber

- Tested to > 800 W CW lasing and 1.2 kW pump power
- V# ~3.5 at 1085, so the fiber is double-moded
- Easily delivers single-mode beam quality with ~10 cm coil diameter
- Coiling does not significantly degrade the slope efficiency

www.nufern.com

Polarization Maintaining LMA Fibers

- Single polarization needed for
 - power scaling through coherent beam combining
 - non-linear frequency conversion to UV-Vis
- Standard PM-LMA fibers
 - Core sizes:10 to 30 um
 - Clad diameter: 125 to 400 mm

Kliner et al., Optics letters, 26(4), 2001

K. Tankala *et al.* SPRC 2005 Experience **Determination**

400 W Polarized Laser

- PLMA-20/400 fiber, B = 3x10⁻⁴
- Polarizing Coil (ϕ = 7.5 cm)
 - Coiling removes LP01 Fast and LP11 Fast & Slow
- Applications for linearly polarized SM lasers:
 - Nonlinear frequency conversion
 - Beam combining

D. Machewirth, V. Khitrov, B. Samson, U. Manyam, K. Tankala, S. Heinemann, C. Liu and A. Galvanauskas, OFC 2005

K. Tankala *et al.* SPRC 2005 Experience **Determination**

Limitation to LMA Designs?

Φcore (μm)	5	20	30	50
NA	0.151	0.06	0.062	0.061
Modeled Mode Field Diameter (1064 nm)	5.77	17.76	23.28	35.5
Modeled Overlap Integral (1064 nm)	0.54	0.72	0.81	0.86
1064 nm abs Estimate (dB/m)	7.18	6.57	7.75	6.71
L (m): 915 nm pump	25.5	25	4.5	4
Threshold Power (W): 915 nm pump	38.9	338.2	676	1363.4
L (m): 975 nm pump	7.7	7.6	1.4	1.2
Threshold Power (W): 976 nm pump	38.9	338.2	736	1613.2

- Excellent beam quality achieved with 50 µm in labs
- Are such fibers suitable for real products?

Power Scaling with Novel Waveguide Designs

- Non-linear limits can be over come by modifying the fiber index profile
 - eg. LFM by J. Dawson et al. at LLNL (CLEO/QELS 2004)
- A _{eff, LFM} ~ 2.5*A _{eff, control} resulting in substantially higher Raman threshold
- Excellent mode quality achieved in LFM fiber

Fiber Development in collaboration with J. Dawson, LLNL (NIF) and W. Torruellas, Fibertek

www.nufern.com

LFM Power Amplifier Performance

K. Tankala *et al.* SPRC 2005 Experience **Determination**

Power Scaling with Multi-Core Fibers

Multi-core fibers offer attractive benefits

- System integration is easier than multiple fiber amps
- Non-linear coupling of the cores gives an in-phase super-mode
 - 7 core fiber (SDL) is well understood (P. Cheo et al.)
- 19 core fiber (Nufern) has been fabricated and is in test (UoM)

Modeling Data: Courtesy Peter Cheo, PC Photonics

K. Tankala *et al.* SPRC 2005 Experience **Determination**

High Power Fibers at Eye Safe Wavelengths

- Eye-safe lasers are critical in areas where human interaction with direct or scattered laser light is likely
- Retinal absorption is 4 orders of magnitude lower at 1.5um vs.1um

Fiber based LIDAR

Images: Courtesy W. Torreullas, Fibertek

K. Tankala *et al.* SPRC 2005 Experience **Determination**

Er:Yb co-doped fibers (1.55 μm)

- PM-EYDF-18/250 fiber
 - Has delivered ~100 μ J pulses and P_{ave}~10 W
 - 3 ns pulses, peak power > 30 kW (~ 65 J/cm2)
 - Single mode output ($M^2 \sim 1.1$)
- LMA Er/Yb fibers in development (Funded by AFRL)

Y. Chen, B. McIntosh, W. Torruellas, A. Carter, J. Farroni and K. Tankala, PW 2005

K. Tankala *et al.* SPRC 2005 Experience **Determination**

- High efficiency ~60% pump conversion
 - Lasing around ~1970nm pump at 793nm
 - Silica glass composition is optimised for high efficiency
 - "2-for-1 process" by exploiting Tm-ion cross relaxation process
- 40 W CW output achieved with 793 nm pumping

Monolithic Fiber Laser/Amplifier Modules

- "All fiber" devices are compact, robust and reliable
- Higher power devices are currently being commercialized
 - High Brightness diodes
 - High power components (Pump combiners, Bragg gratings)
 - Passive fibers (pump and signal delivery, photosensitive fibers)
 - Splicing and packaging technologies

High Power Pump Combiners

- High power multi-mode couplers are now widely available in various configurations
- Allow great flexibility in choosing the diode pump technology for each application

Input Fibers to Combiner (core/clad)	Output Fiber (diameter and NA)	Typical (max) Number of Input fibers	Diode Pump Technology	Typical Power/Leg	Total Pump Power
105/125 0.22NA	400μm 0.46NA	19 (37)	pigtailed single emitter	3-5 W	95W (180W)
200/220 0.22NA	400μm, 0.46NA	7 (7)	fiber coupled diode bars	10-25W	70-175W
400/440 0.22NA	400μm, 0.46NA	3 (3)	Fiber coupled bars and stacks	30-200W	90-600W

LMA Fiber Bragg Gratings

- Photosensitive LMA fibers compatible with Yb-doped LMA fibers developed
- LMA Gratings available (1030 to 1120 nm)

K. Tankala *et al.* SPRC 2005 Experience **Determination**

High power 1030nm Laser (20/400)

- Grating based cavities are efficient and robust (no realignment)
- Extra degree of wavelength control and line width control
 - Critical for non-linear frequency conversion and pumping solid state lasers

K. Tankala *et al.* SPRC 2005 Experience **Determination**

Fiber laser as pump source for Yb:YAG

- Concept for very high average power laser systems
- Anti-Stoke fluorescence cooling laser offsets heat generation
- Fiber lasers used as high brightness pump sources
 - Use multiple fiber lasers to pump 1050nm laser
 - Minimizes quantum defect by pumping at 1030nm
 - High brightness pumps permit low cross section host

www.nufern.com

Low Power PM Amplifiers (15/130 fiber)

Power Scaling to > 25kW

- Beam combining of individual fiber lasers and amplifiers
 - Coherent Beam Combining
 - Spectral Beam Combining
 - Phase Locking of Lasers
- Beam combining requires
 - Narrow line width
 - linear polarization
 - Good beam quality $(M^2 = 1)$
- Next Steps
 - PM Amplifiers
 - 500 -1000 W Amplifier Units

K. Tankala et al. SPRC 2005 Experience Determination

Courtesy Monica Minden, Hughes Research Lab

Summary

- Fiber laser have intrinsic advantages over conventional Solid State and CO₂ lasers
- LMA DC Fibers have enabled high power operation
 - Kilowatt level CW powers
 - Megawatt level peak powers (nanosecond pulses)
- Broad range of monolithic CW and pulsed fiber laser and amplifier modules are being developed for

www.nufern.com

- Materials processing
- Lidar/Ladar systems
- Laser Weapon Systems

Thank You

Acknowledgements D. Kliner & J. Koplow, SNL W. Torruellas, Fibertek Inc G. Frith, DSTO M. Minden, HRL S. Bowman, NRL A. Galvanauskas, U. of Michigan P. Cheo, PC Photonics J. Dawson, LLNL Francois Gonthier, ITF Air Force Research Labs Nufern Colleagues

www.nufern.com

